

- Shuffle the deck of cards and lay them facing down on the table in 8 rows and 8 columns. - Select the player who will start. The player chooses two cards and turns them face up. - If those cards belong to the same point group, the player wins the pair and plays again.
- If cards are not of the same point group, they are turned face down again, and play passes to the player on the left. - The game ends when the last pair has been picked up.
- The winner is the person with the most pairs. There may be a tie for the first place.

Author: Michal Mašek, Dept. of Electromagnetic Field, Czech Technical University in Prague, the Czech Republic. Available online at pexeso.elmag.org.

- Prepare the deck of cards: select N pairs of cards per player (except C_{1} point group). - Add one C_{1} card into the deck. This non-symmetric card represents Black Peter.
- Shuffle the deck and fully deal out cards to the players. One player will receive one more card. - If players find a pair in their hand, they must discard those cards immediately.
- The player left to the one with the extra card will start the game.
- He draws a card from the player at the right. If he can
form a pair with this new card, he must discard that pair.
- Then it is the turn of the player on the left to play in the same way.
- The aim is to discard all cards. The player who is last in and left holding Black Peter is the loser.

Computational
Electromagnetics Group

Computational
Electromagnetics Group

Computational
Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational
Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational
Electromagnetics Group

Computational
Electromagnetics Group

Computational Electromagnetics Group

Computational
Electromagnetics Group

Computational
Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational
Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational
Electromagnetics Group

Computational
Electromagnetics Group

Computational
Electromagnetics Group

Computational Electromagnetics Group

Computational
Electromagnetics Group

Computational
Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational
Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational Electromagnetics Group

Computational
Electromagnetics Group

